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SSZ-70 is synthesized using 1,3-bis(isobutyl)imidazolium, 1,3-bis(cyclohexyl)imidazolium, and
1,3-bis(cycloheptyl)imidazolium structure directing a%ents (SDAs) and the solids obtained are

characterized by powder X-ray diffraction (XRD),

Si magic angle spinning nuclear magnetic

resonance (MAS NMR), electron microscopy, nitrogen and hydrocarbon adsorption, and thermo-
gravimetric analyses. The physicochemical properties of SSZ-70 show that it is a new molecular sieve
that has similarities to MW W-type materials. The catalytic behavior of SSZ-70 is evaluated through
the use of the constraint index (CI) test. Distinct differences in the reactivity between Al-SSZ-70 and
SSZ-25 (MWW) are observed and are the consequences of the structural differences between these

two molecular sieves.

Introduction

SSZ-70 is a new molecular sieve with unknown structure
that was originally prepared by workers at Chevron.' The
original syntheses of SSZ-70 involved borosilicate reaction
conditions using the 1,3-diisopropylimidazolium structure
directing agent (SDA). The borosilicate versions of SSZ-
70 are not useful as catalysts for reactions that require
strong acidity. We recently completed a study employing
16 imidazolium structure directing agents (SDAs) and
approximately 160 inorganic reactions to investigate the
synthesis of molecular sieve SSZ-70.% In that work, we
were able to expand the types of SSZ-70 materials that
could be prepared by direct synthesis to include pure silica
and aluminosilicate compositions. Initial characterizations
of borosilicate SSZ-70 suggested that SSZ-70 may have
structural features similar to SSZ-25/MCM-22 (MWW),
although the crystal structure of SSZ-70 remains unknown
(molecular sieve frameworks are denoted by three-
letter codes that can be found at www.iza-structure.org/
databases/). Because of the commercial importance of
MWW-type molecular sieves as heterogeneous cata-
lysts and the fact that we can now prepare direct syn-
thesis aluminosilicate versions (as contrasted with
postsynthetic conversions of the borosilicate) of SSZ-70,
a more complete understanding of the physicochemical
properties and catalytic behavior of aluminosilicate
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SSZ-70 is merited, especially catalytic reaction com-
parisons with other MWW zeolites.

Pure-silica fluoride reactions typically yield solids with
the BEA* topology for many imidazolium SDAs at H,O/
SiO, = 3.5, while SSZ-70 typically occurs at intermediate
and high H,O/SiO, ratios (7.5 and 14.5, respectively).
Previous studies using identical inorganic conditions
showed a transition in product framework density from
low to high with increasing H,O/SiO, ratios.” One parti-
cularly common transition was BEA* to MTW with
increasing water content. The SSZ-70 occurrences sug-
gested that it should have a micropore volume between
BEA* and MTW. In addition, a sharp delineation in SSZ-70
occurrence was observed between three bis(C7) substituted
SDAs (1,3-bis(cycloheptyl)imidazolium, 1,3-bis(norbornyl)-
imidazolium, and 1,3-bis(cyclohexylmethyl)imidazolium)
and the bis(C8) SDA 1,3-bis(cyclooctyl)imidazolium.?
These results suggested a feature may be present in SSZ-
70 that could not accommodate the larger cyclooctyl ring,
although caution must be exercised as kinetic factors
dominate product selectivity.

Here, SSZ-70 was synthesized using 1,3-bis(isobutyl)-
imidazolium (1), 1,3-bis(cyclohexyl)imidazolium (2), or
1,3-bis(cycloheptyl)imidazolium (3) SDAs based on re-
sults from the full synthesis study.” These SSZ-70 materi-
als were investigated further, and the catalytic activity of
aluminum-containing SSZ-70 (Al-SSZ-70) was compared
to SSZ-25 using the constraint index test (CI test).*
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Experimental Section

Structure Directing Agent Synthesis. All reagents were pur-
chased from commercial vendors and used as received. Liquid
NMR spectra were recorded in deuterated dimethylsulfoxide
(DMSO-ds) on 300 MHz Varian Mercury spectrometers. Com-
bustion analysis (for guest molecule C, H, and N) was performed
at the Chevron Energy Technology Center (Richmond, CA)
using a Carlo-Erba Combustion Elemental Analyzer. All SDAs
were exchanged to the hydroxide form using Dowex Mono-
sphere 550A UPW hydroxide resin (Supelco). The final hydro-
xide concentration was determined by titration with 0.01 N HCI
solution to a phenolphthalein end point.

1,3-Diisobutylimidazolium Bromide (I). Isobutylamine (7.32 g,
100 mmol, Alfa-Aesar, 99%) in 100 mL of toluene (EMD, ACS
Reagent) was placed in a room temperature water bath, and then
paraformaldehyde (3.16 g, 100 mmol, Fisher, 95%) was added
with strong stirring. The solution was stirred at room temperature
for 30 min, and then ice was added to the water bath. Hydrobromic
acid solution (16.87 g, 100 mmol, Sigma-Aldrich, 48 wt %) was
diluted to 20 wt % with 23.66 g of water and then placed on ice for
approximately 1 h. After the toluene solution was cooled for 1 h,
another 7.32 g (100 mmol) of isobutylamine was added dropwise
via an addition funnel. The cold hydrobromic acid solution was
added dropwise via an addition funnel. The ice bath was removed,
and the solution was allowed to warm for approximately 2 h.
Subsequently, glyoxal solution (14.52 g, 100 mmol, Alfa-Aesar,
40 wt % in water) was added dropwise. The reaction was stirred at
room temperature for approximately 36 h. The solution was
concentrated by rotary evaporation to give a viscous yellow/orange
oil. Purification was achieved by adding 125 mL of water and
20 mL of saturated KHCO; and extracting with diethyl ether (2 x
100 mL). The aqueous phase was treated with 1.55 g of activated
carbon (Sigma-Aldrich) and stirred overnight at room tempera-
ture. The carbon was filtered off and washed with a small amount
of water. This process was repeated three times until the filtrate was
colorless to the eye. The filtrate was concentrated by rotary
evaporation, and the was residue extracted with chloroform (2 x
100 mL) and then filtered. The chloroform extracts were com-
bined, dried over MgSOy,, filtered, and stripped down by rotary
evaporation to give a waxy residue. Further drying under high
vacuum yielded 20.57 g of off-white solid (78.7 mmol, 79% yield).
"H NMR (300 MHz, DMSO-dg): 9.41, 7.88, 4.06, 2.11, 0.85. 13C
NMR (75 MHz, DMSO-dq): 136.4,122.8,55.4,28.7,19.0. Analysis
calculated for C;;H»;BrN,: C, 50.58; H, 8.10; N, 10.72. Found: C,
50.27; H, 8.23; N, 10.61.

1,3-Bis(cyclohexyl)imidazolium Tetrafluoroborate (2). Cyclo-
hexylamine (19.83 g, 200 mmol, Alfa-Aesar, 98+%) in 200 mL
of toluene (EMD, ACS Reagent) was placed in a room tempera-
ture water bath, and then paraformaldehyde (6.32 g, 200 mmol,
Fisher, 95%) was added with strong stirring. The solution was
stirred at room temperature for 30 min, and then ice was added
to the water bath. After the solution was cooled for 1 h, another
19.83 g (200 mmol) of cyclohexylamine was added dropwise via
an addition funnel. Tetrafluoroboric acid (36.60 g, 200 mmol,
Alfa-Aesar 48 wt % in water) was diluted to 30 wt % with water
and then added dropwise via an addition funnel. The ice bath
was removed, and the solution allowed to warm for 30 min.
Subsequently, glyoxal solution (28.98 g, 200 mmol, Alfa-Aesar,
40 wt % in water) was added dropwise. The flask was heated at
40 °C overnight and then allowed to cool to room temperature.
The solid precipitate was filtered off and washed with 150 mL of
water and then 150 mL of diethyl ether and dried overnight
under high vacuum. Recrystallization from 2:1 ethyl acetate/
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dichloromethane yielded 33.72 g of off-white solid after drying
under high vacuum (105.3 mmol, 53% yield). '"H NMR (300
MHz, DMSO-dg): 9.19, 7.88, 4.24, 2.07—2.03, 1.84—1.62,
1.43—1.30, 1.24—1.15. *C NMR (75 MHz, DMSO-d): 133.5,
120.8, 58.8, 32.4, 24.6, 24.4. Analysis calculated for
C,sH,sBF4N»: C, 56.27; H, 7.87; N, 8.75. Found: C, 56.56; H,
7.67; N, 8.68.

1,3-Bis(cycloheptyl)imidazolium Bromide (3). With the use of
cycloheptylamine (2 x 110.4 mmol, Alfa-Aesar, 97%), the pro-
cedure for 1 was followed yielding 23.60 g of white solid after
drying under high vacuum (69.1 mmol, 63% yield). "H NMR
(300 MHz, DMSO-d): 9.44, 7.93, 4.50, 2.08—1.97, 1.95—1.97,
1.77-1.69, 1.65—1.56, 1.54—1.46. '*C NMR (75 MHz, DMSO-
de): 133.5,120.8, 61.1, 34.7, 26.8, 23.3. Analysis calculated for
C17H,9BrN,: C, 59.82; H, 8.56; N, 8.21. Found: C, 59.45; H,
8.33; N, 8.08.

Inorganic Reactions. All inorganic reactions were performed
in 23 or 45 mL of poly(tetrafluoroethylene) (PTFE)-lined stain-
less steel autoclaves (Parr Instruments). Hydroxide mediated
reactions were tumbled at approximately 40 rpm using spits
built into convection ovens. Fluoride mediated reactions were
not tumbled. Silica sources were tetraethylorthosilicate (TEOS,
Sigma-Aldrich, 98%) for fluoride reactions and Cab-O-Sil M5
fumed silica (Cabot, 97% SiO, with remainder H,O) for hydro-
xide mediated reactions. Boric acid (J.T. Baker, ACS Reagent)
was used for borosilicate reactions, and Reheis F-2000 (50—
53 wt % Al,O3) or NaY zeolite (Tosoh HSZ-320NAA, SiO,/
AlLOs; = 5.5, Na/Al = 1, and H,O ~ 25 wt %) were used in
aluminosilicate reactions.

Gels for fluoride mediated reactions were prepared by adding
boric acid or aluminum hydroxide gel (if required) to the
SDA*OH™ solution and then adding TEOS. All fluoride
mediated reactions were performed at SDATOH™/SiO, = 0.5
and HF/SDA"OH™ = 1. The vessel was covered and stirred over-
night to ensure complete TEOS hydrolysis and then left un-
covered in a 40 °C oven to evaporate the required water and
ethanol. Once the desired mass had been reached, 48 wt %
hydrofluoric acid (Mallinckrodt) was added with care and the
gel was stirred to form a stiff paste. The autoclave was sealed and
placed in a 150 °C oven and opened every 7—10 days to assess
reaction progress. After homogenization, a small sample was
dispersed in 10 mL of water and inspected under an optical
microscope. For certain reactions, small crystals were often
visible. If no clear sign of crystallinity could be seen by an
optical microscope, a small sample was filtered periodically and
the XRD pattern inspected (Scintag XDS-2000 or Siemens
D-500, Cu Ka radiation).

Gels for hydroxide mediated reactions were prepared by
adding water and 1 N sodium hydroxide solution (if required)
to the SDATOH ™~ solution. Next, a boron or aluminum source
and then silica were added, followed by homogenization.
Borosilicate reactions were run at SiO,/B,O3; = 8 with no
alkali hydroxide (gel composition 1.0 Si0,:0.125 B,03:0.25
SDA"OH:23 H,0). Aluminosilicate reactions with NaY at a
molar silica to alumina (SAR) ratio = 35 had a gel composition
of 1.0 Si0,:0.029 Al,05:0.20 SDATOH :0.05 NaOH:30.0 H,O.
The remaining reactions used Reheis F-2000 aluminum hydro-
xide gel as the aluminum source with a gel composition of 1.0
Si0:z Al,03:0.20 SDATOH :0.10 NaOH:30.0 H,O with z =
0.02 or 0.01.

The inorganic reactions were monitored every 4—6 days by
measuring solution pH and looking for signs of phase separa-
tion. The reactions were checked until a pH maximum was
observed and then filtered. If no pH maximum was observed, the



Article

reaction was continued until a sustained pH decline was ob-
served (indicating SDA degradation). All crude products were
washed with water plus a small amount of acetone and methanol
and then dried at room temperature. N,N-dimethylformamide
(DMF) extractions were performed on as-made AI-SSZ-70
using ~0.4 g of zeolite and 10 mL of DMF. Solutions were
sealed inside PTFE lined autoclaves and heated at 150 °C for
24 h. The extracted product was filtered and washed extensively
with water and then dried at room temperature.

Characterization Methods

Powder X-ray diffraction (XRD) patterns were col-
lected using Scintag XDS-2000 and Siemens D-500 dif-
fractometers (Cu Ka radiation). Thermogravimetric
analysis (TGA) was performed with a Netzsch STA449C
using 75 mL min~" air plus 25 mL min~' argon at a
heating rate of 5°C min~'. Solid-state NMR spectra were
collected using either a Bruker Avance 200 MHz or
Bruker DSX 500 MHz instrument. 2°Si Bloch decay
(BD) experiments on as-made materials used a 500 s
recycle delay. ITQ-1 (MWW) *Si chemical shift data
was obtained from published studies.” Scanning electron
microscopy (SEM) was performed using a JEOL JSM-
6700F instrument. Elemental analyses were performed by
Galbraith Laboratories (Knoxville, TN).

Nitrogen adsorption/desorption isotherms were col-
lected on a Micromeritics ASAP 2000 instrument at
—196 °C. Micropore volumes were calculated using the
t-plot method. The adsorption capacities of zeolites for
vapor phase hydrocarbons n-hexane, 3-methylpentane,
and 2,2-dimethylbutane were measured at room tempera-
ture using a Cahn C-2000 balance coupled with a Yoko-
gawa digital data acquisition system.®’ The vapor of the
adsorbate was delivered from the liquid phase with a
99.54% purity guaranteed by the manufacturer (Sigma-
Aldrich). The relative vapor pressure P/Po was main-
tained at ~0.3 by controlling the temperature of the liquid
adsorbate using a cooling circulator. Prior to the adsorp-
tion experiments, the calcined zeolites were degassed at
450 K in a vacuum of 10~ Torr for 5 h. The sample size
was controlled at ~20 mg of dry zeolite for all experi-
ments. The adsorption capacities are reported in milli-
liters of liquid per gram of dry zeolite, assuming that the
adsorbed adsorbate has the same density as the bulk
liquid (e.g., 0.660 g mL~" for n-hexane, 0.663 g mL™'
for 3-methylpentane, and 0.649 g mL ™" for 2,2-dimethyl-
butane at room temperature).

Catalytic Testing. Catalytic activity of Al-SSZ-70 ma-
terials was evaluated through the constraint index test.*
As-made Al-SSZ-70 synthesized using NaY as the aluminum
source was treated with 1 N HCl at 95 °C for 48 h to neu-
tralize any residual NaY that may affect catalytic activity.®
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Table 1. Fluoride Reaction Conditions for the Synthesis of SSZ-70

entry SDA Si0,/(A1,03,B,03) H,0/Si0, result
1 1 ) 3.5 Si-SSZ-70
2 1 ) 7.5 Si-SSZ-70
3 1 ) 14.5 MTW
4 1 30 15.5 Al-SSZ-70
5 1 50 15.5 Al-SSZ-70
6 1 70 15.5 Al-SSZ-70¢
7 1 11 15.5 B-SSZ-70
8 1 36 15.5 B-SSZ-70
9 3 o0 14.5 Si-SSZ-70

“Minor impurity present.

The SDA occluded within as-made SSZ-70 was expected
to protect the framework aluminum with only unreacted
NaY affected by the HCI treatment. The sample of
SSZ-25 used in this study came from a 5 gallon pre-
paration of the material using a mixed SDA system of
N,N,N-2-trimethyladamantammonium hydroxide and
piperidine as a pore filler as previously described.” All
SSZ-70 materials were calcined to 540 °C at a heating rate
of 1 °C min ™' under flowing nitrogen with a small amount
of air. Calcined materials were ion-exchanged with 1 N
NH4NO; at 50 °C and then filtered and washed with
distilled deionized water. The ammonium-exchanged
materials were pelletized, crushed, and sieved with the
20—40 mesh fraction collected. Sized material (typically
0.5 g) was loaded into a stainless steel tube reactor
supported by glass wool and activated by heating under
flowing argon at 350 °C for at least 4 h. Reactions were
performed at 350 °C unless otherwise noted. Hydrocar-
bon crackingin the CI tests was performed by introducing
an equimolar n-hexane/3-methylpentane mixture (both
from Sigma-Aldrich, 299.9%) via a syringe pump into a
mixing assembly with 5% argon in helium sweep gas
(Airliquide, 99.999%) (LHSV = 1.67h™"). Products were
analyzed using online gas chromatography/mass spectro-
metry (GC/MS; Agilent GC 6890/MSD 5973N) with a
Plot-Q capillary column.

Results and Discussion

Tables | and 2 present the conditions used for synthe-
sizing SSZ-70 in this work. When possible, characteriza-
tion was performed on SSZ-70 materials synthesized
using the same SDA. Most reactions employed bis-
(isobutyl) SDA 1, as this molecule was capable of synthe-
sizing pure silica, borosilicate, and aluminosilicate SSZ-
70. The puresilica fluoride reaction using 1 at a high water
to silica ratio was also included for chemical analysis
comparison. SDA 1 did not make pure Si-SSZ-70 under
hydroxide mediated reaction conditions; therefore, Si-
SSZ-70(OH) wusing bis(cyclohexyl) SDA 2 or bis-
(cycloheptyl) SDA 3 were employed. Products were de-
noted with (OH) or (F) to indicate the appropriate
synthesis conditions. Nitrogen adsorption experiments
were conducted with Si-SSZ-70(OH) synthesized using
SDA 2 while ’Si NMR analyses were with Si-SSZ-70 (F)

(9) Zones, S. 1.; Hwang, S. J.; Davis, M. E. Chem.—Eur. J. 2001, 7(9),
1990-2001.
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Table 2. Hydroxide Mediated Reaction Conditions for the
Synthesis of SSZ-70

entry SDA SiOz/(A1203,8203) result
1 1 50 Al-SSZ-70
2 1 100 Al-SSZ-70
3 1 8 B-SSZ-70
4 2 35 Al-SSZ-70
5 2 oo Si-SSZ-70
6 3 oo Si-SSZ-70

and Si-SSZ-70 (OH) synthesized using SDA 3. Hydro-
carbon adsorption was performed with Al-SSZ-70(F)
synthesized using SDA 1 (entry 5 in Table 1).

Powder XRD patterns are shown in Figures 1—3 for
as-made and calcined SSZ-70. Inspection of the powder
XRD pattern reveals similarity to those obtained from
MWW precursor materials. Figure 1 shows XRD pat-
terns for as-made AI-SSZ-70 synthesized in fluoride and
hydroxide media using 1 (Al-SSZ-70(F) and Al-SSZ-70-

Intensity / a.u.
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Figure 1. XRD patterns of as-made SSZ-25 (top), AI-SSZ-70(F)
(middle), and Al-SSZ-70(OH) (bottom).

6 8
Degrees 26

Figure 2. XRD patterns of as-made SSZ-25 (top), AI-SSZ-70(F)
(middle), and Al-SSZ-70(OH) (bottom).
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Figure 3. XRD patterns of calcined Si-SSZ-70(F) (top), Al-SSZ-70(F)
(middle), and B-SSZ-70(F) (bottom).

(OH), respectively). Also included in Figure 1 is the XRD
pattern of as-made SSZ-25 as a representative MWW
material. All three materials give quite sharp reflections at
26.0° 26, indicating similar structural features may be
present in both materials. While some similarities were
apparent between MWW and SSZ-70 from the XRD
patterns (as illustrated in Figure 1), there were no in-
stances of MWW from any of the many syntheses per-
formed with the 16 imidazolium SDAs studied across 160
inorganic reactions.” Figure 2 is an enlargement of the
XRD patterns illustrated in Figure 1 in the 2—12° 260
range. The pattern for the as-made product shows one
reflection with large d-spacing (3.22° 26, 27.4 A), and
several integer divisors are also present. The pattern for
Al-SSZ-70(OH) is considerably broader than both SSZ-
25 and AI-SSZ-70(F) with the low angle reflection ap-
pearing as a weak shoulder. Broad reflections in the
hydroxide material were likely due to smaller crystal size
(from SEM results). Inspection of the low-angle features
in Figure 2 reveals higher d-spacings for SSZ-70 com-
pared to MWW materials. Higher d-spacings in this
region of the XRD patterns compared to MWW were
also reported for ITQ-30." Comparing the patterns for
hydroxide- and fluoride-mediated products reveals the
same d-spacing for all reflections except one broad reflec-
tion at 8.7° 20 for the fluoride product whereas the
hydroxide product gives two reflections at 7.9 and 9.5° 26.
This diffraction intensity difference could be due to
differences in crystal size along the ¢-direction (orthogonal
to layers) as observed in DIFFaX simulations of MCM-22
and MCM-56.""

Figure 3 shows XRD patterns for calcined SSZ-70
materials synthesized in fluoride media using 1. Shown
are pure silica (Si-SSZ-70(F)), borosilicate (B-SSZ-70(F))
,and aluminosilicate (Al-SSZ-70(F)) materials. For both

(10) Corma, A.; Diaz-Cabanas, M. J.; Moliner, M.; Martinez, C.
J. Catal. 2006, 241(2), 312-318.

(11) Juttu, G. G.; Lobo, R. F. Microporous Mesoporous Mater. 2000, 40
(1-3), 9-23.
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Figure 4. Solid-state ’Si NMR spectra of Si-SSZ-70. Top to bottom: Si-
SSZ-70(OH) CP-MAS, Si-SSZ-70(OH) BD-MAS, Si-SSZ-70(F) CP-
MAS, and Si-SSZ-70(F) BD-MAS.

Si-SSZ-70(F) and AI-SSZ-70(F), the two low-angle re-
flections present in the as-made material (3.2 and 6.5° 26)
were absent or appear with reduced intensity after calci-
nation. The first significant reflection occurs at 7.0° 26
(~12.5 A) in both materials. In contrast, the low-angle
reflections (3.2 and 6.5° 20) persist after calcination for B-
SSZ-70(F) albeit with lower relative intensity. Both low-
angle reflections were not observed after calcining B-SSZ-
70(OH).

Solid-state 2°Si NMR was performed on Si-SSZ-70(F)
and Si-SSZ-70(OH). Spectra were collected on samples
obtained using bis(cycloheptyl) SDA 3. Figure 4 shows
'H—°Si cross-polarization magic angle spinning (CP
MAS) and 2°Si Bloch decay (BD MAS) spectra of as-
made Si-SSZ-70 samples. Both spectra for as-made solids
show significant Q silicon content (—94 ppm resonance).
A comparison of the CP and BD spectra reveal a higher
relative intensity for the —116 and —120 ppm resonances
under CP conditions (2 ms contact time) and a relative
decrease for the —108 ppm resonance. The resonances in
the fluoride-mediated sample are well-defined and span a
similar chemical shift range to those reported for ITQ-1.%!?
The spectrum of calcined Si-SSZ-70(F) illustrated in
Figure 5 shows six well resolved resonances with a small
amount of Q° silicon still present.

Table 3 lists the observed chemical shifts for as-made
Si-SSZ-70 materials. Relative intensity was determined
by integration of the BD MAS spectra. In general the
resonances for Si-SSZ-70 samples are not as well resolved
as those for ITQ-1. This was particularly true for the
hydroxide mediated sample. No attempt was made to
deconvolute the spectra as the limited resolution did not
warrant this. Therefore, fewer chemical shifts are in-
cluded in the table. Inspecting the relative intensities
shows a significant population of Q? silica species in
both hydroxide- and fluoride-mediated samples. The

(12) Camblor, M. A.; Corell, C.; Corma, A.; Diaz-Cabanas, M.-J.;
Nicolopoulos, S.; Gonzalez-Calbet, J. M.; Vallet-Regi, M. Chem.
Mater. 1996, 8(10), 2415-2417.
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Figure 5. Solid-state *’Si BD-MAS NMR of calcined Si-SSZ-70(F).

Table 3. 2°Si Chemical Shifts and Relative Intensities for As-Made
Si-SSZ-70(0OH), Si-SSZ-70(F), and ITQ-1

Si-SSZ-70 (OH) Si-SSZ-70 (F) ITQ-1
Jd/ppm 1/% Jd/ppm 1/%  O/ppm  assignment [/%

-92.6 Q? 12.0

—94.1 22.1 —94.6 105  —94.1 Q? 19.0
—104.3 64  —1052 115 —103.7 Q? 1.9
—110.4 30.1 —108.3 49  -105.0 Q* 2.8
—115.6 279  —110.6  30.5 —108.3 Q* 1.7
-119.7 135 —113.5 121 —110.1 Q* 278
-1163 156 —1124 Q* 2.5

-119.9 148 —114.7 Q* 10.7

—116.7 Q* 10.1

—119.8 Q* 11.5

Table 4. 2°Si Chemical Shifts and Relative Intensities for Calcined
Si-SSZ-70(F) and ITQ-1

Si-SSZ-70(F) ITQ-1
Jd/ppm 1% o/ppm assignment 1%
—96.3 4.6

—105.4 11.5 —105.9 Q4 15.1
—111.0 259 —111.2 Q4 15.1
—113.7 23.1 —111.8 Q4 4.9
—116.0 17.3 —112.6 Q4 7.6
—119.5 17.6 —113.9 Q4 19.0

—116.5 Q4 18.9

—120.3 Q4 19.4

resonance < —100 ppm for each sample can be assigned
as Q°, but there was some ambiguity regarding the
resonances near —105 ppm. The spectrum for calcined
Si-SSZ-70(F) illustrated in Figure 5 clearly shows the
—105 ppm resonance, whereas the —95 ppm resonance
is significantly diminished. This result suggests the —105
ppm resonance to be Q* in order to give a relative Q?
abundance of ~10% in the as-made material. The broad
resonance centered at —104 ppm for the hydroxide
mediated material could not be conclusively assigned to
either Q* or Q* giving an estimated relative Q> population
of ~22—28%. The upper estimate for Q® content in
the hydroxide mediated sample is in general agreement
with those reported for ITQ-1 (29—33%). For as-made
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Figure 6. SEM images of as-made Si-SSZ-70(F) (left) and calcined Al-SSZ-70(OH) (right). The scale bar represents 10 and 1 um for the left and right

images, respectively.

Si-SSZ-70(F), there was no analogous material to compare
the relative Q* population as fluoride reactions generally
produce solids with very few defects (low Q). In addition,
no evidence of SiO4»F species was observed between —130
and —150 ppm in as-made Si-SSZ-70(F). Chemical analy-
sis did show fluorine incorporation as discussed below.
The exact nature of the fluoride species present in Si-SSZ-
701s not understood, although a report of MWW synthesis
with alkali fluoride salts proposed SiO;,F may be pre-
sent."® With this interpretation, fluorine may substitute for
surface hydroxyl groups and therefore skew the relative
Q?/Q* ratio. It should be noted that '’F MAS NMR
revealed one dominant resonance at —69 ppm (data not
shown) with this in the expected range for SiO4,F 14

The chemical shifts and relative intensities for calcined
Si-SSZ-70(F) presented in Table 4 show several differ-
ences. As mentioned above, calcination did not comple-
tely remove all Q° species. In addition, the resonance of
the as-made product at —108.3 ppm is not visible in the
spectrum of the calcined product. These observations
plus the fact that the relative decrease in intensity in the
"H—2%Si spectrum may indicate the presence of SiO3),F
species. The observed chemical shifts and relative inten-
sities show similarity to those of ITQ-1.

SEM images of Si-SSZ-70(F) and Al-SSZ-70(OH) are
shown in Figure 6. Thin hexagonal plates were visible in
the fluoride-mediated reaction product. In comparison, the
hydroxide-mediated product revealed significantly smaller
crystallites. MWW materials form crystals with similar mor-
phology. The observed crystal morphology supports the
similarity to MWW materials (similarities also observed by
XRD and *°Si NMR). Figure 7 shows a transmission
electron microscopy (TEM) image of B-SSZ-70 with a view

(13) Aiello, R.; Crea, F.; Testa, F.; Demortier, G.; Lentz, P.; Wiame,
M.; Nagy, J. B. Microporous Mesoporous Mater. 2000, 35—6, 585—
595.

(14) Koller, H.; Wolker, A.; Villaescusa, L. A.; Diaz-Cabanas, M. J.;
Valencia, S.; Camblor, M. A. J. Am. Chem. Soc. 1999, 121(14),
3368-3376.

SI1Z16489 SSZ-70a
BC6Ebb 200kx

Figure 7. TEM image of B-SSZ-70.

Table 5. Carbon, Nitrogen, and Fluorine Content for Pure-Silica Products
from Fluoride Mediated Reactions Using SDA 1

HzO/SlOZ = H20/SIOZ = HzO/SlOZ =

3.5 (SSZ-70) 7.5 (SSZ-70) 14.5 (MTW)
C/wt % 11.91 13.65 6.94
N/wt % 241 2.79 1.43
F/w t% 0.69 0.83 1.06
C/N 5.76 5.71 5.66
F/N 0.21 0.22 0.55

through the edges of the crystal plates. Note that the layers
are clearly observed. Images at higher magnification did not
show pore features as observed for MCM-22" and SSZ-25.'¢

(15) Leonowicz, M. E.; Lawton, J. A.; Lawton, S. L.; Rubin, M. K.
Science 1994, 264(5167), 1910-1913.

(16) Chan,I.Y.;Labun,P.A.;Pan, M.; Zones, S. 1. Microporous Mater.
1995, 3(4—5), 409-418.
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Table 6. Chemical Analysis of B-SSZ-70(F), AI-SSZ-70(F), and Al-SSZ-70(OH)

gel composition ratio

Si/B = 18 Si/B = 5.5 Si/Al = 35 Si/Al = 25 Si/Al = 15 Si/Al = 50 Si/Al = 25

C/wt % 13.67 13.51 12.23 13.07 13.54 13.62 13.37
N/wt % 2.80 277 2.57 271 2.70 2.82 2.81
F/wt % 1.16 1.04 0.70 0.64 0.82

C/N 5.7 5.7 5.6 5.6 5.8 5.6 5.6
F/N 0.31 0.28 0.20 0.18 0.22

Na/wt % 0.17 0.14
Si/B 217 13.7

Si/Al 34.1 25.5 16.6 444 22

160 140 120 100 80 60 40 20 0
ppm

Figure 8. 'C CP-MAS of SSZ-70 solids synthesized using SDA 1. Top to
bottom = parent SDA in DMSO-d; (* indicates solvent), B-SSZ-70(OH),
B-SSZ-70(F), Al-SSZ-70(F), and Al-SSZ-70(OH).

Chemical analyses were performed on SSZ-70 materials
to gain further insights. All samples were synthesized using
bis(isobutyl) SDA 1. Also included was pure-silica MTW
synthesized at H,O/SiO, = 14.5, representing typical
fluoride mediated reaction products. Table 5 presents
chemical analysis data for pure-silica products from fluor-
ide mediated reactions, and Table 6 contains chemical
analysis for B-SSZ-70 and AI-SSZ-70 materials. Calcu-
lated carbon to nitrogen molar ratios agree with those
expected for the parent SDA. In addition, both imidazo-
lium (135—120 ppm) and alkyl resonances (60—20 ppm)
were observed by '*C CP-MAS NMR in SSZ-70 solids
(Figure 8). These results confirm that the SDA was intact.

The calculated fluoride to nitrogen molar ratios are
shown in Tables 5 and 6, and all F/N ratios can be
compared to the theoretical F/N value for the SDATF~
salt (0.50 for all imidazolium SDAs studied). This value
corresponds to a neutral product with no framework
defects to balance the charge of the organic cation.
MTW synthesized using 1 gave F/N = (0.55 that was very
close to the expected value for no framework defects. By
comparison, the two Si-SSZ-70 products show signifi-
cantly lower F/N ratios and this extends to the boron and
aluminum containing materials. Fluoride absence implies

that the organic charge must be balanced by silanol
defects as observed by >°Si NMR above.'’

Chemical analysis of B-SSZ-70(F), Al-SSZ-70(F), and
Al-SSZ-70(OH) in Table 6 shows very similar organic
content across the seven products. Carbon to nitrogen
molar ratios are between 5.6 and 5.8 agreeing well with
the expected ratio of 5.5. Slightly higher fluorine content
was measured in the borosilicate samples compared to the
pure-silica and aluminosilicate samples. With trivalent
lattice substitution (B or Al), a framework charge is
introduced and fluoride is no longer required to balance
the cation charge. However, the calculated F/N ratios
show little variation with lattice substitution for both
boron and aluminum incorporation, respectively. In ad-
dition, the F/N ratios for all three aluminosilicate samples
are almost the same as the pure silica products. The report
of MCM-22 synthesis using hexamethyleneimine with
alkali fluoride salts discussed above showed varying
amounts of fluoride incorporated in the aluminosilicate
product.’® Under the approximately neutral reaction
conditions the secondary amine should be protonated
and similar cation/framework charge arguments must
hold.

Inspection of the Si/B and Si/Al ratios measured in the
as-made products reveals less boron incorporation than is
present in the reaction gel. By comparison, aluminosili-
cate products synthesized via both fluoride and hydroxide
conditions reveal Si/Al ratios almost identical to those in
the reaction gel. These data agree with reported trends in
boron and aluminum incorporation for products from
hydroxide reactions using the same SDA.'® Chemical
analysis for both hydroxide mediated products shows
some sodium incorporation. The measured Na/Al values
correspond to ~0.25and 0.11 for Si/Al = 50 and Si/Al =
25, respectively, indicating the framework charge was
predominantly compensated by SDA rather than alkali.
This suggests organic occupies most of the void space
within SSZ-70 in contrast to SSZ-25 where the bulky
adamantyl SDA was not expected to fit in the sinusoidal
10MR.’

In addition to chemical analysis, TGA was performed
on SSZ-70 products. Figure 9 compares the TG profiles
for Si-SSZ-70(F) synthesized using 1 and 2. Both materi-
als show very similar mass loss between 200 and 620 °C
(19.3% for 1 and 20.4% for 2), yet the mass loss profiles
are distinct. The smaller bis(isobutyl) SDA 1 shows one

(17) Koller, H.; Lobo, R. F.; Burkett, S. L.; Davis, M. E. J. Phys. Chem.
1995, 99(33), 12588-12596.

(18) Zones, S.1.; Hwang, S.-J. Microporous Mesoporous Mater.2003, 58
(3), 263-277.
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Figure 9. TGA of as-made Si-SSZ-70(F) synthesized using SDA 1 and
SDA 2.

mass loss starting at approximately 250 °C, whereas two
mass loss regions can be seen for the larger bis(cyclohexyl)
SDA 2. The first mass loss starts at around 250 °C as per 1
with an inflection point at ~425 °C followed by another
mass loss. Observing two mass loss regions with the larger
SDA could indicate two distinct organic environments.
With as-synthesized SSZ-70 most likely being a layered
material, the first mass loss can be assigned to organic
occluded between layers and the second mass loss attrib-
uted to organic occluded within the layers. Observing one
mass loss with the smaller SDA was likely due to a weaker
fit within the framework offering lower thermal protec-
tion.

Several postsynthesis experiments were performed on
an Al-SSZ-70 sample synthesized using 2 to gain insight
into the relative contribution of each organic environ-
ment. The sample was obtained from reaction conditions
that use the SAR = 35 NaY as an aluminum source, and
the product treated with 1 N HCI to neutralize residual
FAU species as described in the Experimental Section.
The first experiment explored SDA removal by DMF
extraction. Similar experiments with SSZ-25 showed
organic removal and significant changes in the XRD
pattern after DMF extraction.” No organic removal
was detected by TGA after extraction for the Al-SSZ-70
material studied. In addition, the XRD pattern was
identical to the parent material. The inability to remove
organic by DMF extraction suggests an organic/frame-
work environment similar to traditional zeolites where
extraction does not typically remove organic. The second
experiment thermally treated the as-made AI-SSZ-70
material to remove the organic species associated with
the lower temperature weight loss region (Figure 10).
Inspecting the TGA profiles indicated 350 °C was suffi-
cient to remove organic residing in the first environment,
and 350 °C should be approximately 75 °C below the mass
loss onset of the second environment. After the sample
was heated at 350 °C for 5 h in air, all organic below
425 °C was removed and the XRD pattern showed clear
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Figure 10. TGA of Al-SSZ-70(OH) synthesized using SDA 2 before and
after postsynthetic treatments.
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Figure 11. XRD patterns of Al-SSZ-70(OH) synthesized using 2 before
and after postsynthetic treatments. From bottom to top: parent material,
DMF extracted, and 350 °C treated.

differences. TGA profiles and XRD patterns of the
samples after DMF extraction and thermal treatment
are shown in Figures 10 and 11, respectively. The XRD
pattern resembled calcined Al-SSZ-70(OH) even though
~7 wt % organic remained occluded. This heat treated
material was ammonium-exchanged and assessed for
micropore volume and catalytic activity as described
below.

Micropore volumes of SSZ-70 products were obtained
using nitrogen adsorption. All SSZ-70 samples examined
were synthesized using 1 except Si-SSZ-70(OH) that used
2 and the AI-SSZ-70(OH) 350 °C treated sample synthe-
sized using 2. Table 7 lists micropore volume for each
SSZ-70 material. These data show a clear distinction
between the fluoride and hydroxide mediated products
with a 0.20 cm® g~ ' micropore volume observed from all
three fluoride mediated products and 0.09—0.14 cm® g~!
obtained from the hydroxide mediated products. The
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Table 7. Micropore Volumes of SSZ-70 Products

micropore volume

SSZ-70 product /cm3 g71
Si-SSZ-70 (F) 0.20
B-SSZ-70 (F) 0.20
Al-SSZ-70 (F) 0.20
Si-SSZ-70 (OH) 0.09
B-SSZ-70 (OH) 0.12
Al-SSZ-70 (OH) 0.14
Al-SSZ-70 (OH) treated at 350 °C 0.09

micropore volumes for the fluoride products are similar
to those reported for MWW materials (0.17—0.18 cm®
¢~ 1.12 The 350 °C treated material shows approximately
two-thirds the micropore volume of calcined Al-SSZ-
70(OH) material. Assuming this organic resides in inter-
layer regions, this gives a similar contribution as reported
for SSZ-25 where ~0.12 cm® g~ ' micropore volume was
attributed to the large cages formed between layers.

Hydrocarbon adsorption was performed to gain in-
sight into possible pore sizes. Figure 12 shows the
time dependence of the adsorption capacity of n-hexane,
3-methylpentane, and 2,2-dimethylbutane in SSZ-70 and
SSZ-25. The kinetic diameters of these three molecules
are 4.4 A for n-hexane, 5.0 A for 3-methylpentane, and
6.2 A for 2,2-dimethylbutane. The fast uptakes of
n-hexane and 3-methylpentane (both are the reactants
for the constraint index test to be discussed below) in both
SSZ-70 and SSZ-25 indicate that the diffusion of the mole-
cules of these two adsorbates is not hindered in channel
systems of these two zeolites. These results also imply
that the catalytic cracking reactions of n-hexane and
3-methylpentane occurring in the constraint index test
of SSZ-70 and SSZ-25 are not controlled by the reactant
shape selectivity. The slow uptakes of 2,2-dimethylbu-
tane observed in both SSZ-70 and SSZ-25 indicate that
the effective size of the pore openings of SSZ-70 and
SSZ-25 become especially critical to the diffusivity
of bulkier 2,2-dimethylbutane molecules, as previously
reported for 10-ring zeolites.*” Therefore, these results
suggest that SSZ-70 is a medium pore zeolite.

Catalytic Activity. The constraint index test is used here
as a model acid-catalyzed hydrocarbon reaction. Four
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Figure 12. Hydrocarbon adsorption vs time for SSZ-70 and SSZ-25. 3-
MP is 3-methylpentane, and 2,2-DMB is 2,2-dimethylbutane.
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Figure 13. CI test cracking rate vs time on stream for Al-SSZ-70 materi-
als: AI-SSZ-70(OH-1)=AIl-SSZ-70(OH) synthesized using SDA 1 and Al-
SSZ-70(OH-2)=AI-SSZ-70(OH) synthesized using SDA 2.

AI-SSZ-70 materials were tested: Al-SSZ-70(F, Si/Al = 26)
and AI-SSZ-70(OH, Si/Al = 22) synthesized using 1 plus
Al-SSZ-70(OH) and the 350 °C treated material synthe-
sized using 2. The physicochemical characterizations
outlined above for SSZ-70 showed similarity to MWW
materials, so SSZ-25 was included for comparison (the
SSZ-25 CI test reaction was performed at 330 °C). Figure
13 shows the cracking rate as a function of time on stream
(TOS). Results from a more comprehensive study on the
CI test behavior reported high initial activity for SSZ-25
that was comparable to BEA* and greater than MFI,
which was followed by rapid deactivation.'” The three
SSZ-70 materials shown here behave similarly. The de-
activation with TOS follows a similar path as SSZ-25. The
350 °C treated material shows the same deactivation trend
although the initial rate was significantly lower than for all
other materials owing to a lower number of active sites.
These data suggest a similarity to MWW materials;
however, the CI value versus TOS relationships shown
in Figure 14 present a clear distinction between SSZ-70
and SSZ-25. All materials reveal initial CI values < 1 with
SSZ-25 giving a rapid increase as previously described.?
By contrast, all SSZ-70 materials maintain CI values < 1.2
throughout the reaction. With regards to the TOS beha-
vior of SSZ-25, it was postulated the deactivation rates of
the two independent pore systems were different giving rise
to a changing CI value. Both pore systems could contribute
to the initial reactivity, with the more accessible MWW
cage dominating over the sinusoidal pore system. The high
initial activity from active sites located within the cages
may mask the sinusoidal pore reactivity. As active sites
in the cages deactivated due to fouling, the sinusoidal pores
can account for relatively higher reactivity resulting in an
increase in the CI value to the range expected for medi-
um pore materials (1 < CI < 12). MWW deactivation in
n-heptane cracking at 350 °C showed carbonaceous

(19) Carpenter, J. R.;, Yeh, S.;, Zones, S. I.; Davis, M. E. J. Catal. In

press.
(20) Zones, S. 1.; Harris, T. V. Microporous Mesoporous Mater. 2000,
35—6, 31-46.
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Figure 14. Constraint index vs time on stream for Al-SSZ-70 materials:
Al-SSZ-70(OH-1)=AI-SSZ-70(OH) synthesized using SDA 1 and Al-
SSZ-70(OH-2)=AI-SSZ-70(OH) synthesized using SDA 2.

deposits only formed in supercages with no deactivation
observed in the sinusoidal channels.?' All SSZ-70 mate-
rials reveal similar cracking rate deactivation suggesting
the presence of a similar cavity, but the absence of an
increasing CI value as the material deactivates suggests a
second pore system distinct to the sinusoidal I0MR pore
found in MWW.

(21) Matias, P.; Lopes, J. M.; Laforge, S.; Magnoux, P.; Guisnet, M.;
Ribeiro, F. R. Appl. Catal., A 2008, 351(2), 174—183.
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Conclusions

Pure silica, borosilicate, and aluminosilicate SSZ-70
materials were characterized and showed some similarity
to MWW materials. XRD analysis of as-made products
indicated that SSZ-70 has slightly larger layer spacing
compared to MWW. Si-SSZ-70 showed very similar >*Si
MAS NMR resonances to ITQ-1, suggesting SSZ-70 could
be a disordered MWW material. All SSZ-70 materials
synthesized under fluoride conditions had lower fluorine
content than expected for a defect free material. Fluoride
absence requires silanol defects to balance organic charge,
and this accounted for the Q* silicon observed by °Si MAS
NMR. AI-SSZ-70 catalytic behavior was assessed through
the CI test with distinct differences observed in CI as a
function of TOS compared to SSZ-25 (MWW). Cracking
rate as a function of TOS was qualitatively the same
between SSZ-70 and SSZ-25, suggesting a similar feature
to the large MWW cavity might be present in SSZ-70. The
absence of increasing CI with TOS in SSZ-70 materials
could indicate a different secondary pore system is present
compared to the sinusoidal 10-ring channel in MWW.
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